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Abstract—In this paper, we evaluate the capacity gains offered
by MIMO systems relative to SISO by using two metrics: the ratio
between the expected value of the two capacities and a weighted
difference between the two capacities. We present results for
these metrics for the case of a general channel, where fading
could be iid, correlated Rayleigh, or any other type. We derive
limiting values of the capacity metrics for low and high SNR
and show via simulation their behavior at other values of SNR.
These simulations provide valuable insight into the variation of
the capacity metrics in the important SNR range from —5 dB to
20 dB which is commonly observed in cellular systems.

I. INTRODUCTION

Since the appearance of the seminal papers on MIMO by
Telatar [1] and Foschini [2], numerous authors have analysed
the capacity of single and multi-user MIMO systems for a
wide range of fading channels, antenna configurations, receiver
types, interference levels, SNR etc. (see, for example, [3]-
[10]). In this paper, our work is motivated by a measurement
study which showed that the capacity of a 2 x 2 MIMO link is
often considerably less than twice the equivalent SISO link at
typical SNR levels. Thus, we focus on an analysis of MIMO
capacity gain, which is the capacity of a MIMO link relative
to the equivalent SISO link. MIMO links offer a number of
virtual channels equal to m = min(ny,ng), the minimum
of the number of transmit and receive antennas. Hence, our
capacity gain analysis is benchmarked by comparing MIMO
capacity to SISO capacity scaled by m. This gain is considered
for a range of SNR values and channel conditions with varying
amounts of fading correlation at either or both ends. We
consider two metrics to look at the gain, the ratio of MIMO
to SISO capacity and a weighted difference between the two
capacities. For both these approaches we develop limiting
values at low and high SNR for arbitrary channels.

There is a wealth of papers that look at MIMO or SISO
capacity although the great majority focus on Gaussian chan-
nels. A good starting point is [3], where the authors provide
an overview of extensive results on the Shannon capacity
of single and multiuser MIMO channels. Factors such as
the availability of channel information, SNR and correlation
models, are discussed in order to understand their impact on
the potential capacity gains of MIMO techniques. In [9], the
authors derive explicit expressions for the channel capacity

using closed-form finite sums of the exponential integral
for independent and identically distributed (iid) Rayleigh flat
fading channels. In another paper [10], the same authors
develop a closed-form expression for the mean (ergodic)
capacity of the iid Rayleigh fading MIMO channel and a
tight upper bound for double-sided correlated MIMO channels
based on a Kronecker structure. Chiani et al. [8] derive a
closed-form expression for the characteristic function (CF)
of MIMO capacity with one sided correlation, either among
the transmitting antennas or among the receiving antennas,
in Rayleigh-fading environments. The exact mean capacity of
the MIMO system is then derived from the CF. In [7], the
authors use a similar approach to [8] to derive the parameters
of a Gaussian approximation to the exact capacity under one
sided correlation. The impact of correlation on the change in
degrees of spatial freedom of a MIMO channel is described in
[6], where the mean capacity and eigenvalue distribution are
also described. Loyka [5] studies MIMO systems with a large
number of transmitting and receiving antennas in Rayleigh
channels with an exponential correlation matrix and derives
simple approximations of ergodic capacity. In [4], the author
considers capacity gain and array gain, and derives an upper
bound for the average capacity gain under perfect channel state
information (CSI) at both ends. In [11], the variation of the
capacity ratio for iid Rayleigh channels is shown for the low
SNR regime and valuable insight is provided indicating that
at low SNR an nt X ngr system yields a power gain of ng
over a SISO system.

Whilst there are ample papers that may be used to derive the
capacity ratio under certain channel conditions, there is no sin-
gle work that analyses the ratio for general channel conditions.
Furthermore, there is a scarcity of published information on
capacity difference. Closed form expressions for both the ratio
and difference that are valid for all SNR values are intractable
for general channels. Therefore, we resort to limiting values
at low and high SNR . At low SNR there is a power gain
regime as noted by [11], but at high SNR there is a spatial
degrees of freedom gain regime. The change from one regime
to another as the SNR increases is interesting to observe in our
simulations. Motivated by these issues, we make the following
contributions in this paper:
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o We evaluate limiting values (for low and high SNR) for
the capacity ratio and difference for arbitrary channels
for both equal power and water filling (the later assuming
perfect CSI at the transmitter). We derive an exact value
of capacity difference at infinite SNR, D.

o We analyze the effects of system size and correlation on
these limits as well as simulating the metrics for moderate
SNR levels.

o We demonstrate that the MIMO ratio gain can drop well
below m for typical SNR values and is further reduced
by correlation.

II. SYSTEM MODEL AND PERFORMANCE METRICS

Consider a single-user MIMO link with nT transmit anten-
nas, ny receive antennas, a flat fading channel matrix, H, total
transmit power, P, and a link SNR of p = P/o?, where o is
the power of the additive white Gaussian noise at each receive
antenna. For this system, the standard capacity equations are

Cnm = logy (

I+ pWD , (1)
nr

rank H

~ 1
Cm = Z log, (1 + ﬁ()\z‘/i - 02)+> 2)
i=1

where C; is the MIMO capacity with no CSI at the trans-
mitter, Cy is the waterfilling capacity with perfect CSI at the
transmitter, (a)™ = max(a,0), p is the water level, and W
represents the m X m matrix

HH' <
W= TR 3)
HTH nrt S nr

with \; > Ao > ... > )\, denoting its m eigenvalues.

The focus of this paper is on the gains offered by MIMO
over the corresponding SISO link. To evaluate these gains we
consider the difference measure

D =E(Cu) — mE(Cs), “4)

where Cg is the SISO capacity,

Cs = log, (1 +p |h\2> , 5)

and h is the SISO channel coefficient drawn from the same
channel model as the MIMO system. We also consider the
relative gains via the ratio
_ E(Cwm)
E(Cs)

(6)

Equivalent measures, D and R, are defined for the case where
perfect CSI is available at the transmitter.

A. Channel Models

In this paper, we consider a range of channel models for
the single-user MIMO link. These models include a general
channel model, iid and correlated Rayleigh fading and a fully
correlated channel model. For the general model, we have the
channel matrix H, where the only assumptions are that the

matrix is normalized, E UHUE} = 1, and the entries of H

do not have perfect correlation. Hence, corr (H; ;, Hy ;) # 1
for (i,7) # (k,l). The general channel model makes no dis-
tributional assumptions and therefore incorporates spatial, ge-
ometric models as well as statistical models such as Rayleigh,
Ricean, Nakagami, etc.

The Rayleigh model is defined by

H = RY/*URY?, 7)

where the entries of U are iid CN'(0,1) and Ry, Ry are
the correlation matrices at the receiver and transmitter respec-
tively. Hence, the standard Kronecker model is assumed [6].
When Rr = R = I we have iid Rayleigh fading. The fully
correlated channel is defined by

H = hllnRXnT7 (8)

where h; is a single channel coefficient that is identical for all
nrtngr links, giving perfect correlation between the elements
of H. Although a rather artificial model, it is a useful tool to
gain insight into the effects of correlation. Note that all channel

models have E {|H”|2} =1 so that E [tr (HHT)] = nrNT.

B. Mathematical Preliminaries

The following straightforward results are necessary in the
analysis of Section III. For the general channel model at high
SNR (p — o) we have

nrp
() 1w
nr
Note that [W| > 0 with probability 1 for the general channel
model. For the SISO channel at high SNR

(1 + p|h|2)m 5

’I+LW’ ~ 1. 9)

o (10)
(p|h|?)
At low SNR (p — 0) we have
‘I+pW ~1+ 2 (W), (11)
nrt nrt
and the logarithmic property
log, (14 ¢€) ~ elog, e (12)

for small e, is also useful. Finally, for the fully correlated
model, a little algebra shows that

’pr‘ =1+ png|hi|?. (13)
nr

III. ANALYSIS
A. The General Channel Model

1) No CSI at the transmitter: The difference measure, D,
in (4) can be evaluated at low and high SNR as shown below.
Using (11) and (12) in (4) gives, in the low SNR case,

D%EP%4}+5twwqum%ﬁﬁthAM>
T
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as p — 0. Using (12), E[tr(W)] = ngnr and E [|h?] = 1
gives

D =~ p(ngr — m)log, e. (15)
Hence, D — 0 as p — 0 and D > 0 for small p if ng > nr.

When ng < nr, (15) does not indicate the sign of D for
small p, since ng —m = 0. Taking higher order terms in p in
(14) shows that D > 0 for small p if nT > ng and D < 0 if
nt = nr. Proof is omitted for reasons of space.

At high SNR, it is more convenient to express D as

D= [tog, ( {1+ plnf)

Using (9) and (10) in (16) gives, at high SNR,

D~E {mgg <(p|h|2)m (;;)m WI)}

=E [log, ((nr|h[*)"™|W|)] £ Dw.

I+ pWD] .6

nrt

a7)

Hence D — D, as p — 0o, where D, is a constant which
can be positive or negative depending on the channel statistics.
It is well known that correlation tends to reduce |W|. Hence,
from (17), we observe that correlation will also tend to reduce
Do and will thus have a corresponding effect in reducing D.

The limiting results for D have a direct application to the
limits of R, since R can be expressed as

R +m. (18)

~ E[C4]
Hence, at low SNR, D = p(ng — m)logye and Cs =~
p|h|?log, e, so that E [Cs] ~ plog, e giving

R — ngr (19)

as p — 0. At high SNR, D — D, and E[Cs] grows
monotonically so that R — m as p — 00.

2) Perfect CSI at the transmitter: It is well known that
at low SNR, p — 0, waterfilling only uses the dominant
eigenchannel and at high SNR, p — oo, waterfilling allocates
power evenly amongst the eigenchannels. These properties
enable the limiting values of D and R to be identified.

From (2), as p — 0 and only the dominant eigenchannel is
used, we have y — - = p and

Cnt = logy (1 + pA1) = pAylog, e. (20)
Substituting (20) in D and R gives
D~ p(E(A) —m)logye 1)
and
R~E(\). (22)

Solutions for E();) are known for iid and semi-correlated
l%ayleigh channels [12]. Hence, at low SNR, R — E();) and
D —0asp—0.

At high SNR, it is known that the m eigenchannels are

allocated equal power. Hence, the capacity becomes

Cy ~ Zlog2 (1 + %)\l)
i=1

= élogQ (1 + ('OHWT) )\i) .

nr

(23)

Now (23) is the capacity of an ng X nr channel with no
CSI at the transmitter and SNR = pnr/m. Using (17) and
(18) with this new SNR value gives

D — E [log, ((mlh2) =™ [W))] 24)

and R — m as p — oo. The capacity boost from waterfilling
to the high SNR difference measure can be evaluated as A =
lim (D — D). Substituting (24) and (17) into A gives

p—+00
A =mlog, (n—T) (25)
m
and thus the capacity difference at high SNR becomes
D — Do +mlog, (”—T) . (26)
m

B. The Fully Correlated Channel Model

1) No CSI at the transmitter: For the fully correlated case,
using (13) in (4) gives

D =E [log, (14 pnr|hi|?)] — mE [log, (1 + p|h|?)] .

27
Using (12) in (27) gives, at low SNR,
D~ (E [an|h1|2] —mE [an|h|2]) log, e
= p(nr —m) log, €. (28)
At high SNR, (27) becomes
D ~ E [log, (png|h1]?)] — mE [log, (p|h|?)]
= —(m—1)logy p+c, (29)

for some constant c. Hence, the low SNR behaviour is the
same as for the general channel. However, at high SNR, D
becomes increasingly negative, heading to —co as p — oo at
a gradient of (m —1)821% bps/Hz/dB. In contrast, D — Do
for the general channel.

For R, we use (13) in (6) to give

_ E[logy (1+ pnrlhi|?)]
E [log, (1 + plh|?)]
At low SNR, using (12) in (30) gives R — ny as p — 0. At
high SNR, the log, p term dominates in both the numerator
and denominator of (30) so that R — 1 as p — oo.
2) Perfect CSI at the transmitter: For the fully correlated
channel, W has a single non-zero eigenvalue, with E(\;) =
nrng. Substituting E(A1) in (21) and (22) gives

(30)

D =~ p(npng —m)log, e 31)

and

R ~ NTNR, (32)
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TABLE I
SUMMARY OF CAPACITY GAIN RESULTS: RATIO, R, AND DIFFERENCE, D, FOR LIMITING p

General Channel Fully Correlated Channel
p—0 p — 00 p—0 p — o0

R nR m nR 1
No CSI D 0 D 0 -
Full CSI R E()\l) m nTnNRr 1

D 0 Do +mlogy 2% 0 log, nrng (m =1), —co (m > 1)

TABLE II .. .
HIGH SNR CAPACITY LIMITS FOR IID MIMO,SIMO AND MISO [10]. For ny = nr = N, Dy for iid MIMO Rayleigh

ANTENNA CONFIGURATIONS
DOO

logy(e) 377 1
logy(e) 3277, 14
logy(e) — 2 = —056
10logy(e)/3 —4 = 0.81
10log,(e)/3 — 2 = 2.81
13logy(e)/3 — 8 = -1.75

Antenna Configurations
nt = 1ng > 1

nt>1,ng =1 IOgQ nrt

nTan:2
TLT:4,’ILR:2
nT=2,nR:4
nT:nR:4

at low SNR. Hence D — 0 and R — nrng as p— 0.
At high SNR, Cy = log, (1 + pA1), so that

D~FE [logsy (pA1)] — mE [1Og2 (p|h|2>]

= logy nrng + (1 —m)log, p. (33)

Hence, as p — oo, D — logy nrng if m =1 and D — —c0
if m > 1.

Noting that for high SNR, E[Cy] ~ log,, p, using (33) and
(18) we obtain R — 1 as p — oo. The results of Sections
III-A and III-B are summarized in Table 1.

C. Evaluation of D, for Rayleigh Channels

It is possible to derive a closed form expression for D, in
the Rayleigh case. This enables the evaluation of the high SNR
capacity difference for equal power and water filling systems'.

1) D for iid Channel: In the case of iid Rayleigh chan-
nels, using the closed-form expression for the ergodic MIMO
capacity [9] and the SISO capacity, it can be shown that the
high SNR asymptotic capacity difference, D, is given by

m—1 k 21
(InT — nr| +9)!
0o =logs(
0L ey { G
nt—ngr|+17
(2= 21 (20+ 2z = x| Ti 1 }
k—1 20— = j
— mlogy nr. (34)

Table II shows values for D, calculated from (34) for a
number of specific antenna configurations. More compact
expressions for a number of specific antenna configurations
can be obtained by means of the approximation methods in

'Due to space constraints, details of the derivation of Do are deferred to
the journal version of this paper.

channels can be approximated and simplified as

Dy = (N —1)(yv —1)logy e, (35)

where v is the Euler constant. Equation (35) suggests a linear
increase in D, with respect to the number of transmit and
receive antennas.

For nt > ngr and using z =
approximated by

[z]— 1

oo"‘lOgQG Z

+ (nr — 1) {(z— 1) log,y ; +(y— 1)10g2e}7

where [-] is the ceiling function. Consider a MIMO system
with z = 2 (such as np = 4,ng = 2). Here, D, can be
simplified as Do, & 0.44 + 0.39(ng — 1).

For nt < ng and using z = ng/nT, the capacity difference
can be approximated as

[2]— 1

oo"’lOgQG Z

X {zlog2 z+ (1 —z)logy(z — 1) +

nt/nr, D can be

~log, [2 (36)

(nr —1) 37

(v —1)logye}.
Consider again the case where z = 2 (such as np = 2,ng =
4). Here (37) becomes Do, = 1.44 + 1.39(nT — 1).

The approximations in (35) to (37) have increased accuracy
when z is an integer or is much larger than 1.

2) Dy for Correlated Channels: Assuming the Kronecker
correlation model in (7), a simple approximation for D, exists
in the case where nT = ng = N. It is well known that for
the MIMO channel in (7), the high SNR approximation for
the ergodic capacity is given by

} . (3%)

Oy~ E [log2 R1/2HR1/2R1/2THTR1/2T

= log, |RR| + log, |RT| + E [logQ

L w
nr

The last term in (38) represents the ergodic capacity of an
iid MIMO Rayleigh channel at high SNR. Thus, the limiting
capacity difference for an N x N correlated MIMO channel
can be simply expressed as

D™ = Do + log, |RR| + log, |RT/, (39)
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where D, is given by (34) or approximated by (35). Corre-
sponding results for ng # nr are possible, but are omitted
for reasons of space.

IV. SIMULATION RESULTS

In this section, we present simulation results for MIMO
capacity gain and difference for the scenarios described in
Section III. Specifically, we consider equal power (no CSI)
and water-filling (perfect CSI) power allocation for Rayleigh
channels which are iid, correlated at both Tx- and Rx-side or
fully correlated. In the case of Tx- and Rx-side correlation, the
elements of Rg and Ry are given by (Rgr);; = (R1);; =
r'i’ﬂ, the so-called exponential correlation structure [5]. The
antenna configuration and the correlation value, r, are indi-
cated in the relevant figures.

Figures 1 and 2 show the capacity gain, R, and difference,
D, for equal power distribution across all eigenchannels for
two-sided correlation. The results are consistent with the
analytical derivations given in Section III-Al, specifically
R—nrasp—-0,R—masp—>00,D—0asp—0and
D — Dy as p — oo. The asymptotic values of D, in Fig.
2 are consistent with those given in Table II. The interesting
troughs in R for 2x 2 and 4 x 4 systems follow since the limits
for both low and high SNR are m, whereas D < 0 for small
p, as discussed below (15). This indicates an initial drop in the
value of R before returning to the limit. Similarly, for a 4 x 2
system we see a peak in R as the limits are m and D > 0
for small p. These trends are important since the peaks and
troughs occur in the —5 to 20 dB range, the practical range of
operation. Hence, for symmetric systems, the desired capacity
scaling of m relative to SISO is not achieved and correlation
will further reduce the gain.

4.5

@
5}

Capacity Ratio, R
w

20
SNR, p (dB)

Fig. 1. R with equal power distribution and Tx,Rx-side correlation.
Figures 3 and 4 show the capacity gain and difference,
respectively, for water filling power allocation in a two-sided
correlation scenario. The asymptotic results agree with the
theory in Section III-A2. At high SNR, R — m as p — 00.
There are two kinds of gain; the power gain regime at low SNR

w

\S]

—_

o

Capacity Difference, D
|

20
SNR, p (dB)

Fig. 2. D with equal power distribution and Tx,Rx-side correlation.

and the spatial degrees of freedom gain at high SNR. Figures 3
and 4 show the limiting values of these two regimes. However,
SNR values in a cellular network are typically around —5 dB
to 20 dB. In this range of SNR, a change of regime from
the power gain to degree of freedom gain is evident. Also,
depending upon ny and nr, the capacity ratio could be more
or less than the limiting values as a function of SNR. For
2 x 2 and 4 x 4 systems the pattern follows from (21) and
(26). As p — 0, D — 0 while D > 0 for small p as shown
in (21). As p — oo, D — Do from (26) and D is negative
(see Table II). Hence, we observe the initial rise followed by
a drop to a negative limit. Focusing on the difference measure
at high SNR, the improvement due to water filling, as given
by (25), is A = 2 for ny = 4, ng = 2 and zero for the
other antenna configurations shown. Hence, relative to the
equal power results in Fig. 2, D — Do + 2 for ny = 4,
ng = 2 and D — Dy for the other cases.

Capacity Ratio, R

2r i i S e e
-40 -20 0 20 40 60 80
SNR, p (dB)
Fig. 3. R with water filling and Tx,Rx-side correlation.

Figures 5 and 6 show the capacity ratio and difference,
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Capacity Difference, D

20
SNR, p (dB)

Fig. 4. D with water filling and Tx,Rx-side correlation.

respectively, for the fully correlated channel case with equal
power distribution and water-filling. In the case of equal power
distribution, as noted in Section III-B1, the low SNR behaviour
is identical to the general channel case. At high SNR, we
observe that R — 1 as p —+ oo and D — —o0 as p — o0
with a gradient of (m=1)1%, 10 ' Thege results are consistent
with those derived in Section III-B1. For the case of perfect
CSI at the Tx, as derived in Section III-B2, R — NTNR as
p— 0and R —1as p — o0. The capacity difference D—0
asp—>0andf)—>—oo as p — oo for the cases of m = 2,4
as shown.

The fully correlated results have R and R decaying mono-
tonically and D and D diverging to —oo. This further explains
the trends in Figs 1 and 2 where increasing levels of correlation
cause a drop in the R, D curves.

16
14 ]
s 12 B
5
~= 10 : : 1
=] 2x4 WF, 4x2 WF
S 8 1
[
iy 6 [4x4 EP, 2x4 EP, 2x2 WF |
2
o
<
O 4
2
0 1 1 1 1
-40 -20 0 20 40 60
SNR, p (dB)
Fig. 5. Ror Rfora fully correlated channel.

V. CONCLUSION

We have presented new results for capacity improvement in
MIMO systems in the form of the MIMO-SISO capacity ratio

4x2 WF, 2x4 WF

Q 0

5

S

¢ -10r

=

A -20r

2

E

5

o -30r

% =20 20
SNR, p (dB)
Fig. 6. D or D for a fully correlated channel.

and difference. Limiting results for the two capacity metrics
have been derived and their variation with SNR is shown. In
particular, we observe the evolution from a power gain regime
at low SNR to a degrees of freedom gain regime at high SNR.
This evolution over the SNR range from —5 dB to 20 dB is
particularly important as it is commonly observed in cellular
systems. In addition, we derive an asymptotic expression for
the capacity difference at high SNR and show that it settles
to a constant value (positive or negative) that depends upon
antenna numbers and channel conditions.
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